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Abstract. In this work we show that the polaron effects in cylindrical quantum wires are function of
the cylinder radius R0 through the boundary conditions for both the ionic and the electronic motion
and through the size dependence of the static and high frequency dielectric constants. We find that the
dielectric constants are increasing functions of R0. This fact and the different boundary conditions for the
ions and the electrons have the final consequence that polaron self-energy can either be an increasing or a
decreasing function of R0.

PACS. 71.38.-k Polarons and electron-phonon interactions – 73.21.Hb Quantum wires – 63.22.+m
Phonons or vibrational states in low-dimensional structures and nanoscale materials

1 Introduction

In the last years a large number of experimental tech-
niques have been used to fabricate confined semiconduc-
tors nanostructures with different shapes [1–8]. These sys-
tems are interesting for both the basic physics and the
opto-electronic devices. The electronic, optical and trans-
port properties have been investigated both in quantum
dots [10–14] and in quantum wires [15–19]. Many-body ef-
fects have been taken into account [20,21]. In particular,
the first quasi-analytical solution of the Schrödinger equa-
tion in the ellipsoidal geometry [22] has induced studies
on the shape dependence of electronic, optical and cor-
relation properties [23,24]. Furthermore, the possibility
to find bound electronic states in cylindrical deformed
wires [16,25–27] stimulated the study of the correlated
and localized two-electrons states [28].

There are two different ways to confine the particles
(electrons and/or holes) in a volume: (a) using a suitable
localization potential in two or three dimensions; (b) as-
suming that the particles are confined because two mate-
rials are in contact so that confining forces come out at the
interface. For what concerns polaron effects, these differ-
ent kinds of localizations require different electron-phonon
interactions. In the first case the polaron effects are cal-
culated using a three-dimensional model (for example the
Fröhlich interaction [29]) where the electron localization is
due to a confining potential; in the second case, depending
on the materials at contact, suitable boundary conditions
at the interface must be imposed for both the electronic
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and the ionic motion. In this last case it seems that pola-
ronic effects are described with more details. In any case,
although the results of the models could be different when
the dimension of the system is small with respect to the
polaron radius, a physical requirement is that they must
be the same when the system dimension increases.

In confined systems, the phonon modes have been cal-
culated using both the continuous dielectric model [30–40]
and the microscopic description [41–44], even in regu-
lar cylindrical wires and spherical dots with multi-shells
materials [45,46]. In the most simple cases, the opti-
cal longitudinal phonon mode is that of the bulk mate-
rial, but in some calculations in the continuous dielectric
model [47,48], the motion of the ions with reliable bound-
ary conditions has been considered explicitly in cylindri-
cal wires of GaAs plunged in AlAs. When the dimen-
sion of the system is small, both the longitudinal and
transverse optical phonon frequencies are lower than the
asymptotic ones, but they tend to the asymptotic limit
when the radius becomes larger than almost 20 Å. Fur-
thermore the explicit form of both the electron-phonon
and the electron-interface phonon interaction have been
calculated in the regular cylinder [45] in the framework
of the Fröhlich polaron theory, assuming that the longi-
tudinal optical phonon mode is that of the bulk material.
Using this form for the electron-phonon interaction and an
electronic wave function completely localized in the cylin-
der, the polaron self-energy is an increasing function of the
cylinder radius R0 and it becomes the bulk self-energy
when R0 � Rp [49] (Rp is the polaron radius). On the
other hand, using a localization potential and the Fröhlich
form of the electron-phonon interaction it is found that
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the polaron self-energy is a decreasing function of R0 and
becomes that of the bulk when R0 � Rp [50,51].

In this work we study the polaron effects when a par-
ticle (electron or hole) is forced to be in a quantum wire
of cylindrical shape. The medium is treated in the con-
tinuous approximation, but we impose different boundary
conditions for the motion of ions and electrons. We discuss
also the origin of the dependence of the static and high
frequency dielectric constants on the cylinder radius us-
ing as a starting point the self-consistent calculation of the
dielectric constants in an ellipsoidal dot [22,23,54] when
χ = c/a → ∞ (c and a are respectively the rotational and
transverse axis). The result is that the dielectric constants
increase as a function of R0 because the induced charges
on the surface tend to screen the polarization effects. This
fact and the use of different boundary conditions for the
ion and the electron motion have the final result that the
polaron self-energy can increase or decrease as a function
of R0.

The work is organized as it follows: in Section 2 we
discuss, in the continuum model, the features of the dis-
persive dielectric function in a cylindrical quantum wire
and how it depends on the radius and on the boundary
condition for the ionic motion; in Section 3 we write the
polaron Hamiltonian using different forms of the electron-
phonon interaction; in Section 4 we calculate, using a self-
consistent variational method, the self-energy of the po-
laron and show how it depends on the type of the electron-
phonon interaction used; finally in Section 5 we present
the conclusions.

2 The dielectric function of a cylindrical
quantum wire

The polaron effects in a polar material can be studied
starting from the set of equations

d2u
dt2

= −ω2
0u+

e

µ
Eloc −β2

l ∇ (∇ · u)+β2
t ∇× (∇× u) (1)

P = neu + nαpEloc (2)

Eloc = E +
4
3
πP (3)

where µ is the reduced mass of the ions in the unit cell
and u, E, P, ω0 describe, respectively, their relative dis-
placements, the electric field, the polarization field and
the ions oscillation frequency, n is the number of ionic
dipoles per unit volume and αp the polarizability of the
atoms in the unit cell. In equation (1), that concerns the
equation of motion for the ionic displacement, non-local
contributions are taken into account. In equation (3) local
field effects are included through the Lorentz rule for an
homogeneous and isotropic material, although this could
be avoided using more complicated linear relations. With
the substitution of equation (3) in (2), we obtain

P = b21u + b22E (4)

with

b21 =
ne

1 − 4
3πnαp

b22 =
nαp

1 − 4
3πnαp

. (5)

By inserting equations (3) and (4) in the spatial Fourier
transform of equation (1), we obtain

d2ũ
dt2

= −
(

ω2
0 − 4

3
π

e

µ
b21 − β2

t k2

)
ũ

− (β2
t − β2

l

)
(k · ũ)k + b12Ẽ (6)

with

b12 =
e

µ

(
1 +

4
3
πb22

)
. (7)

We assume that the above equations can be used both
in the bulk material and in the cylinder; the only differ-
ence is that the values of the constants could depend on
the cylinder radius. If the ionic motion is transverse, i.e.
k ⊥ ũ, we find for the frequency of the transverse mode

ω2
t (k) = ω2

0 − 4
3
π

e

µ
b21 − β2

t k2. (8)

On the other hand, taking also the time Fourier transform
of equation (6), we obtain for the longitudinal motion

ũ =
b12

ω2
t (k) + (β2

t − β2
l ) k2 − ω2

Ẽ (9)

and equation (4) becomes

P̃ =
(

b22 +
b12b21

ω2
t (k) + (β2

t − β2
l ) k2 − ω2

)
Ẽ. (10)

This last equation allows the definition of the longitudinal
spatial and frequency dependent dielectric function

ε(k, ω) − 1
4π

= b22 +
b12b21

ω2
t (k) + (β2

t − β2
l ) k2 − ω2

(11)

from which it immediately follows that

ε∞ = 1 + 4πb22 (12)

ε(k, 0) = ε∞ + 4π
b12b21

ω2
t (k) + (β2

t − β2
l ) k2

. (13)

We can therefore rewrite equation (11) as

ε(k, ω) = ε∞ +
(ε(k, 0) − ε∞)

(
ω2

t (k) +
(
β2

t − β2
l

)
k2
)

ω2
t (k) + (β2

t − β2
l ) k2 − ω2

.

(14)
From this equation we can derive the longitudinal fre-
quency ωl as the solution of ε(k, ω) = 0

ω2
l =

ε(k, 0)
ε∞

(
ω2

0 − 4
3
π

e

µ
b21 − β2

l k2

)
. (15)
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Using equation (14) and considering only terms up to k2,
this frequency can be rewritten as

ω2
l (k) =

ε(0, 0)
ε∞

(
ω2

0 − 4
3
π

e

µ
b21

)
− ε(0, 0)

ε∞
β2

l k2

+
ε(k, 0) − ε(0, 0)

ε∞k2

(
ω2

0 − 4
3
π

e

µ
b21

)
k2. (16)

If, as we assume, limk→0
ε(k,0)−ε(0,0)

k2 = β (finite number),
we obtain

ω2
l (k) = ω2

L − β2
Lk2 (17)

where

ω2
L =

ε(0, 0)
ε∞

ω2
t (0) (18)

β2
L =

ε(0, 0)
ε∞

β2
l − β

ε∞

(
ω2

0 − 4
3
π

e

µ
b21

)
.

This last equation gives the Lyddane-Sachs-Teller rela-
tion and the spatial dispersion of the longitudinal opti-
cal phonon frequency. In our hypothesis, for example, the
Lyddane-Sachs-Teller has the same form in the bulk and
in the confined system, but the values of ε(0, 0), ε∞, β2

l ,
β, ω2

0 and b21 can depend on the cylinder radius.
We now want to consider how to adapt the dispersive

dielectric function to the case of a cylindrical quantum
wire. It is well known that the longitudinal phonon mode
can be described through the equation [47,52,53]

[
∇2 +

ω2
L − ω2

β2
L

]
u = 0 (19)

where we are taking ∇× u = 0. The cylinder axis is ori-
ented along the z-axis, so that the system is invariant for
translations and rotations around the z-direction, so that
we can write

uz = Cm exp(iqz) exp(imϕ)Fm(ρ) (20)

where z, ϕ and ρ are the cylindrical coordinates and q
and m are the wavenumber along the z-direction and an
integer number such that uz(ϕ) = uz(ϕ + 2π). Since uz

must satisfy equation (19), we find that

Fm(ρ) = Jm

(√
γ2 − q2ρ

)
(21)

with γ2 = ω2
L−ω2

β2
L

. The condition ∇× u = 0 implies that

uϕ =
m

qρ
uz (22)

uρ = −i

√
γ2 − q2

q
Cm exp(iqz) exp(imϕ)J

′
m

(√
γ2 − q2ρ

)
.

We use these results to determine a complete set of longi-
tudinal polarization modes. This is an important tool for
the development of the theory in the next Sect., because
we can adapt the form of the electron-phonon interaction
to the physical situation of our system. For example, if we

determine the frequencies of the normal modes through
the equation Jm

(√
γ2 − q2R0

)
= 0, we have that the

displacements and the strains of the modes satisfy on the
surface the conditions uz = uϕ = 0, uρ �= 0, Sϕz =
1
2

(
1
ρ

∂uz

∂ϕ + ∂uϕ

∂z

)
= 0, Szz = ∂uz

∂z = 0, Sϕϕ = ∂uϕ

∂ϕ = 0,

Sρϕ = 1
2

(
∂uϕ

∂ρ + 1
ρ

∂uρ

∂ϕ − uϕ

ρ

)
�= 0, Sρρ = ∂uρ

∂ρ �= 0, Sρz =
1
2

(
∂uρ

∂z + ∂uz

∂ρ

)
�= 0. On the other hand if we impose that

J
′
m

(√
γ2 − q2R0

)
= 0, we have normal modes such that

on the surface the displacement uρ = 0, uϕ �= 0, uz �= 0,
and that only the strain Sρz = 0. Finally if we impose

b
√

γ2 − q2R0J
′
m

(√
γ2 − q2R0

)
+ aJm

(√
γ2 − q2R0

)
=

0, where a and b are fixed numbers independent of m,
we have normal modes with mixed boundary conditions
with all displacements and strain not zero (except the case
b/a = −1, when the strain Sρϕ = 0). In all the described
cases the dispersive longitudinal frequencies are given by

ω2
l,mi = ω2

L − β2
L

(
χ2

mi

R2
0

+ q2

)
(23)

where the numbers χmi are found through specific equa-
tions. The conclusion is that the space and time dispersive
dielectric function has a form much more complicated than
that given by equation (14). The general form should be
written as

ε(q, ω) = ε∞(q) +
∑
m,i

Cmi(q)ω2
0,mi(q)

ω2
0,mi(q) − ω2

(24)

whose zero are given by the frequencies of equation (23)

ε∞(q) +
∑
m,i

Cmi(q)ω2
0,mi(q)

ω2
0,mi(q) − ω2

l,mi

= 0 (25)

and
ε(q, 0) = ε∞(q) +

∑
m,i

Cmi(q). (26)

Numerical calculations have shown that in nanowires
ε∞(q) is smaller than that in the bulk [22,23,54] and such
size dependence is not due to the dispersive terms of the
bulk dielectric function. We can therefore assume that the
dielectric function depends on the system size through two
independent factor: the dispersive term and the size de-
pendence of ε∞(q). This allows us to make the following
approximation: we neglect the dispersive terms in the bulk
dielectric function and consider the limit q → 0, so that
the second term to the right of equation (24) reduces to
the bulk case. We obtain for the frequency dependent di-
electric function

ε(ω) = ε∞(0) +
[ε(0, 0) − ε∞(0)] ω2

t

ω2
t − ω2

(27)

where ωt is the transverse frequency. In this equation the
dependence of ε∞(0) on the wire radius is known, but not
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that of ε(0, 0). Since equation (27) can be written in the
form

ε(ω) = ε∞(0)

⎡
⎣1 +

(
ε(0,0)
ε∞(0) − 1

)
ω2

t

ω2
t − ω2

⎤
⎦ (28)

we see that in the limit R0 → ∞ it occurs that ε(0,0)
ε∞(0) =

ε0
ε∞ , where ε0 and ε∞ are the static and high frequency
dielectric constant, ε∞(0) = ε∞ and ωt is the bulk trans-
verse frequency. Our final approximation is that even if
ωt and ε∞(0) do not assume the asymptotic value, this
occurs for the ratio ε(0,0)

ε∞(0) . It seems that numerical calcu-
lations reported in [47] support this fact, at least for not
very small radii (R0 � 10 Å).

We consider now a quantum wire embedded in a sec-
ond material with dielectric constant εd. Our model is de-
veloped starting from the above equations with βl = βt =
0. In this case equations (9) and (10) can be written in real
space: the condition ∇× u = 0 implies that E = −∇φ(r)
and consequently

P = −ε(ω) − 1
4π

∇φ(r). (29)

Since ∇·D = ε(ω)∇·E = ∇· (E + 4πP) = 0, we have for
the potential φ(r)

ε(ω)∇2φ(r) = 0 r < R0

εd∇2φ(r) = 0 r > R0. (30)

Equations (29) and (30) allow to understand the features
of φ(r) and P(r) considering reasonable physical condi-
tions for the system:

(I) we could assume that inside the wire ε(ω) = 0, i.e.
ω = ωl = (ε0/ε∞)

1
2 ωt. Since the normal component

of the displacement vector D is continuous on the
surface we must have

ε(ω)
∂φ

∂n
|in = εd

∂φ

∂n
|out (31)

and, consequently, ∂φ
∂n |out= 0. From that it follows

that φ(r) is arbitrary inside the wire while outside
it satisfies the Poisson equation with the boundary
condition that it is zero at infinite and its normal
derivative is zero on the wire surface: i.e. φ(r) = 0
outside the wire. Since the potential φ(r) must be
continuous across the surface, we must choose the
arbitrary function φ(r) in the wire with the bound-
ary condition φ(r) |r∈S= 0. Since the surface charge
is given by

σs = −∂φ

∂n
|in (32)

we conclude that the adopted boundary conditions
implies the presence of induced surface charge;

(II) we could also assume ∂φ
∂n |in= 0 and that φ(r) is

discontinuous at the surface (in any case φ(r) = 0
for r > R0). We have the new physical situation that
on the surface there is a distribution of microscopic
dipoles;

(III) we could finally assume that there is an unique po-
lar medium of dispersive frequency ε(ω). In this case
we must consider only the first of equations (30) in
all the space with the boundary condition φ(r) → 0
when r → ∞. Since in this case there is no disconti-
nuity in the medium, the surface charges or dipoles
distribution are not present.

Before ending this section we note that other different
problems can be solved in this theoretical scheme. The
first one is obtained requiring that inside and outside the
wire ∇2φ = 0. The regular solution of the Laplace equa-
tion inside and outside the wire and the continuity of the
normal component of the vector D allows to determine the
frequency ωs of the polarization modes, that are surface
modes, because in the wire ∇·P = −ε(ωs)−1

4π ∇2φ = 0. The
second problem that it can be treated is that of a cylinder
deformed (for example having a bulge) or containing an
impurity, when localized phonon modes arise.

We do not enter here in the details of these new situa-
tions because the work could become more involved from
the mathematical point of view. In any case in the Sec-
tion 4.2 we discuss qualitatively the contribution of the
surface polarization mode to the polaron effect.

3 Quantum wire polaron Hamiltonians
and boundary conditions

In our first case, we take ε(ω) = 0, D = 0, E = −4πP
and consequently Eloc = − 8

3πP inside the wire. Since the
energy of the free oscillations is given by

Hph =
1
2

∫
dr
[
nµu̇2 + nµω2

0u
2 − neu · Eloc

]
(33)

we obtain

Hph =
1
2

∫
dr

[
nµ

(
1 + 8

3πnα

ne

)2 (
Ṗ∗ · Ṗ

+ω2
LP∗·P)] . (34)

Since (see Eq. (29))

P(r) =
1
4π

∇φ(r) (35)

we write for the potential inside the wire

φ(r) =
∞∑

m=0

∞∑
i=1

∑
q

cmiq

R0
Jm

(
χmi

ρ

R0

)
exp(iqz)√

L
exp(imϕ)

=
∞∑

m=0

∞∑
i=1

∑
q

φmiq (ρ, z, ϕ) (36)

where cmiq are coefficients to be fixed, χmi are the zeros
of the Bessel function Jm labelled by the index i, ρ is the
component of the vector r in the plane perpendicular to
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the z-axis, ϕ the azimuthal angle and L the length of the
wire in the z-direction, such that

1
L

∫ ∞

−∞
dz exp(−iqz) exp(iq

′
z) = δq,q′ (37)

with δq,q′ the Kronecker function. The potential φ(r) sat-
isfies the boundary condition φ(r) = 0 |r=R0 and it is
written as a sum of terms orthogonal in the volume of the
wire. We see that also P can be written as a sum of terms
Pmiq given by

Pmiq =
1
4π

(
∂φmiq

∂ρ
eρ +

1
ρ

∂φmiq

∂ϕ
eϕ +

∂φmiq

∂z
ez

)

Pmiq · eρ =
cmiq

4π

χmi

R2
0

J
′
m (χmiu)

exp(iqz)√
L

exp(imϕ)

Pmiq · eϕ =
cmiq

4π

im

ρR0
Jm (χmiu)

exp(iqz)√
L

exp(imϕ)

Pmiq · ez =
cmiq

4π

iq

R0
Jm (χmiu)

exp(iqz)√
L

exp(imϕ) (38)

where u = ρ
R0

, J
′
m (x) = dJm(x)

dx and eρ, eϕ, ez indicate re-
spectively the unit vector in the direction of ρ, in the direc-
tion perpendicular to ρ and to the z-axis and finally along
the z-axis. Since u is proportional to P, we see that the
boundary condition on the potential φ becomes boundary
condition for the displacement u. The modes Pmiq are
normalized as

∫
V

drP∗
m′i′q′ · Pmiq = δm′mδi′iδq′q

J
′
m(χmi)2

16π

×
(

χ2
mi

R2
0

+ q2

)
c2
miq. (39)

The coefficients cmiq are fixed assuming

nµ

(
1 + 8

3πnα

ne

)2
J

′
m(χmi)2

16π

(
χ2

mi

R2
0

+ q2

)
c2
miq = 1. (40)

We can therefore conclude that equation (34) gives the
energy of the free polarization modes as the sum of inde-
pendent harmonic oscillators, all with the same frequency
ωL. With the transformations

P =
∑
miq

(
�

2ωL

) 1
2 (

amiq + a†
miq

)
Pmiq (41)

Ṗ = −i
∑
miq

(
�ωL

2

) 1
2 (

amiq − a†
miq

)
Pmiq (42)

where the boson operators amiq (a†
miq) destroy (create)

the modes with the labels (miq), we obtain from (34) the
free phonon Hamiltonian

Hph =
∑
miq

�ωL

(
a†

miqamiq +
1
2

)
. (43)

The electron-phonon interaction is given by

Hel−ph = e

∫
dr

′
P(r

′
) · ∇′ 1

| r′ − r |
= − e

4π

∫
dr

′∇′
φ(r

′
) · ∇′ 1

| r′ − r |
=

e

4π

∫
dr

′
φ(r

′
)∇2

r′
1

| r′ − r |
= −e

∫
dr

′
φ(r

′
)δ
(
r
′ − r

)
= −eφ(r) (44)

with ∇′ ≡ ∇r′ . Using the expressions of cmiq derived from
equation (40) we find for the polaron Hamiltonian

H = − �
2

2m∗∇2 + Hph + Hel−ph (45)

with Hph given by equation (43) and

Hel−ph = −
∑
miq

[
Vmiq

exp(iqz)
R0

Jm

(
χmi

ρ

R0

)

× exp(imϕ)a†
miq + h.c.

]
(46)

where

Vmiq = e

√
2�ωl

L

√
1
ε∗

1[
J ′

m(χmi)2
(

χ2
mi

R2
0

+ q2
)] 1

2
(47)

with 1
ε∗ = 1

ε∞
− 1

ε0
. We have inserted the normalization

factor L in the expression of the electron-phonon interac-
tion.

Considering the case when there is a distribution of
electric dipoles on the surface, we take the same expres-
sion (36) for the potential φ(r), but the numbers χmi are
replaced by χ

′
mi, the zeros of J

′
m(x). This choice allows us

to show that the normalization condition is replaced by

∫
V

drP∗
m′i′q′ · Pmiq = δm′mδi′iδq′q

Jm(χ
′
mi)

2

16π

×
(

1 − m2

χ
′2
mi

)(
χ

′2
mi

R2
0

+ q2

)
c2
miq.

(48)

We can follow the same procedure as before to write the
final Hamiltonian. The only difference occurs in the cal-
culation of the electron-polarization interaction since now
φ(r) �= 0 on the surface. We have

Hel−ph = −e

∞∑
m=0

∞∑
i=1

∑
q

cmiq

R0

exp(iqz)√
L

exp(imϕ)

·
[
Jm

(
χmi

ρ

R0

)
− Jm (χmi) Im(qR0)

×qR0K
′
m(qR0)

]
(49)
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where Im(x) and Km(x) are the modified Bessel functions
and K

′
m(x) = dKm(x)

dx . The new electron phonon interac-
tion becomes

Hel−ph = −
∑
miq

[
Umiq

exp(iqz)
R0

exp(imϕ)a†
miq

·
{

Jm

(
χ

′
mi

ρ

R0

)
− Jm (χmi) Im(qR0)

×qR0K
′
m(qR0)

}
+ h.c.

]
(50)

where

Umiq = e

√
2�ωL

L

√
1
ε∗

1[
Jm(χ′

mi)2
(
1− m2

χ
′2
mi

)(
χ
′2
mi

R2
0

+ q2
)] 1

2
.

(51)
We have found that the expression of the electron-phonon
interaction depends on the basis used to calculate it. The
choice of the basis depends on the physical boundary con-
ditions acting on the wire.

Finally, to treat the case of an electron constrained
to move in a quantum wire embedded in the infi-
nite medium of the same material, we start from the
Fröhlich Hamiltonian in the three-dimensional space

H = − �
2

2m∗∇2 + �ωl

∑
k

a†
kak

+
∑
k

[
Z

k
exp (ik · r) ak + h.c.

]
(52)

where Z = −i
(
4παRp/L3

) 1
2

�ωL, k and r = (ρ, z) are the
wave vector and the electron position respectively and L
is the linear dimension of the polar medium. We write the
polaron Hamiltonian in cylindrical coordinates through
the unitary transformation

aχ,kz ,n =
√

χ

2π

∫ 2π

0

dϕ exp(inϕ)ak (53)

with k ≡ (χ cosϕ, χ sin ϕ, kz). It is found that

ak =
1√
2πχ

∞∑
n=−∞

exp(−inϕ)aχ,kz ,n (54)

and [
aχ,kz,n, a†

χ′ ,k′
z,n′

]
= δ(χ − χ

′
)δ(kz − k

′
z)δn,n′ (55)

where δ(x) and δn,n′ are the Dirac and Kronecker δ func-
tions. In this representation the polaron Hamiltonian be-
comes

H = − �
2

2m∗∇2 + �ωL

∑
χ,kz ,n

aχ,kz,na†
χ,kz ,n

+
∑

χ,kz,n

[√
2πZ

√
χ√

χ2 + k2
z

in exp(ikzz)

×Jn (χ�) aχ,kz ,n + h.c.]
(56)

where
∑

kz
→ L

2π

∫
dkz and

∑
χ → (

L
2π

)2 ∫
dχ.

In all the cases discussed we find that ∇·P = 1
4π∇2φ �=

0 in the wire, indicating that the induced charges concern
all the material. These cases are different from the surface
polarization discussed at the end of the previous section.

4 The polaron ground state

4.1 The calculation of the polaron energy

Since the interaction Hamiltonians (46), (50) and (56)
have similar forms, we proceed to the explicit calculation
of the polaron energy only in the first case. The Hamil-
tonian (45) is transformed using two unitary transforma-
tion: the first one exp(S) takes into account the rotational
symmetry of the system while the second one exp(S1) is
a coordinate dependent Lee, Low and Pines transforma-
tion [55,56]

S = iϕ
∑
miq

ma†
miqamiq. (57)

and

S1 =
∑
miq

(
g∗miq(ρ, z)amiq − gmiq(ρ, z)a†

miq

)
(58)

In Appendix A we present the details of the calculation
and write the polaron energy Ep

Ep = 〈Φ(ρ, z) | Hp | Φ(ρ, z)〉

=
�

2

2m∗

[
〈Φ | − ∂2

∂ρ2
− 1

ρ

∂

∂ρ
− ∂2

∂z2
| Φ〉

+〈Φ |
⎛
⎝∑

miq

∣∣∣∣∂gmiq(ρ, z)
∂ρ

∣∣∣∣
2

+
∑
miq

∣∣∣∣∂gmiq(ρ, z)
∂z

∣∣∣∣
2
⎞
⎠ | Φ〉

+〈Φ | 1
ρ2

∑
miq

m2 | gmiq(ρ, z) |2| Φ〉
⎤
⎦

+�ωL〈Φ |
∑
miq

| gmiq(ρ, z) |2| Φ〉

+〈Φ |
∑
miq

[
VmiqJm

(
χmi

ρ

R0

)
fmiq(z)

R0

×g∗miq(ρ, z) + c.c
] | Φ〉. (59)

We determine the polaron ground state energy through
the variational method using a trial wave function Φ(ρ, z)
defined only in the wire, independent of ϕ and such that
Φ (R0, z) = 0. Its form will be specified later. The pro-
cedure we follow is as follow. From the explicit form of
Ep = 〈Φ(ρ, z) | Hp | Φ(ρ, z)〉, we write the Euler equations

δEp

δg∗miq(ρ, z)
= 0 (60)
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whose solutions give gmiq(ρ, z). Inserting these in the ex-
pression of Ep and using a suitable form for the wave func-
tion Φ(ρ, z), we can minimize the total energy with respect
to the parameters contained in Φ(ρ, z). The explicit form
of the Euler equations is

− �
2

2m∗

[
∂2gmiq

∂ρ2
+
(

1
| Φ |2

∂ | Φ |2
∂ρ

+
1
ρ

)
∂gmiq

∂ρ

+
∂2gmiq

∂z2
+

1
| Φ |2

∂ | Φ |2
∂z

∂gmiq

∂z
− m2

ρ2
gmiq

]

+�ωLgmiq = −VmiqJm

(
χmi

ρ

R0

)
exp(iqz)

R0
. (61)

An important point is that these equations depend on
the electronic wave function, indicating that there is an
influence of the electron state on the phonons distribution
functions and vice versa. The trial wave function is taken
of the form

Φ(ρ, z) =
1

R0

[
c1J0

(
χ1

�

R0

)
+ c2J0

(
χ2

�

R0

)]
exp(iQ̄z)√

L
(62)

where χ1 and χ2 are the first two zeros of J0 (x) and c1

and c2 are normalization factors given by

c1 = ± 1
|J ′

0(χ1)|
[

1
π
−
(
c2J

′
0(χ2)

)2
] 1

2

|c2| ≤ 1√
π|J ′

0 (χ2) | . (63)

The form (62) of the wave function contains contributions
from higher energy electronic subbands. However, in all
our calculations we have systematically found that the
lowest energy is obtained when c2 = 0; in other words,
the best trial wave function is

Φ(ρ, z) =
1

R0

1√
π

1
|J ′

0(χ1)|J0

(
χ1

�

R0

)
exp(iQ̄z)√

L
. (64)

In Appendix B we show how to solve equation (61) us-
ing the trial wave function (64). Since ∂|Φ|2

∂z = 0, the main
technical difficulty is the complicated electron coordinates
dependence of the coefficient of the terms ∂gmiq

∂ρ . A way to

address this problem is the substitution of R0
|Φ|2

∂|Φ|2
∂ρ with

〈Φ| R0
|Φ|2

∂|Φ|2
∂ρ |Φ〉. What we are doing is a sort of mean field

approximation for taking into account the influence of the
electron wave function on the phonon distribution func-
tions. In the framework of the Fröhlich electron-phonon
interaction, the same approximation has been used, with
success, in the calculation of the ground state and of some
excited states both in the polaronic exciton and bipolaron
problems [56]. The final result is

gmiq(u, z) = Vmiq
2m∗

�2
exp(iqz)R0vmi(u) (65)

where

vmi(u) = u|m| exp
(

Γ − Λ

2
u

)
Γ (a)

Γ (b)Λ1−b
· [−M(a, b, Λu)

×
∫ 1

u

dyyb−|m| exp
[
−
(

Γ + Λ

2
y

)]
U(a, b, Λy)

×Jm (χmiy) +
U(a, b, Λ)
M(a, b, Λ)

M(a, b, Λu)

×
∫ 1

0

dyyb−|m| exp
[
−
(

Γ + Λ

2
y

)]
M(a, b, Λy)

×Jm (χmiy) − U(a, b, Λu)

×
∫ u

0

dyyb−|m| exp
[
−
(

Γ + Λ

2
y

)]
M(a, b, Λy)

×Jm (χmiy)] (66)

and where

Γ = −〈 R0

| Φ |2
∂ | Φ |2

∂ρ
〉, Q2 =

R2
0

R2
p

+ (qR0)
2

Rp =
(

�

2m∗ωL

) 1
2

, a =| m | +
1
2

+
Γ

2Λ

b = 2 | m | +1, Λ =
√

Γ 2 + 4Q2. (67)

Here M(a, b, x), U(a, b, x) and Γ (x) are two independent
hypergeometric confluent functions and Γ (x) the Gamma
function [57] respectively. Since gmiq(u, z) is calculated
through an inhomogeneous differential equation, we need
additional boundary conditions; in this case we imposed
in equation (66) that vmi(u) is regular at u = 0 and
vmi(1) = 0

A similar procedure can be used to calculate the
ground state energy of the Hamiltonian (56). We find

Ep = − �
2

2m∗ 〈Φ|
[
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

∂2

∂z2
+

1
ρ2

∂2

∂ϕ2

]
|Φ〉

+〈Φ|Vp(ρ, z)|Φ〉 (68)

where the effective potential Vp is defined as

Vp(ρ, z) =
�

2

2m∗
∑

χ,kz,n

(∣∣∣∣∂gχ,kz ,n(ρ, z)
∂ρ

∣∣∣∣
2

+
∣∣∣∣∂gχ,kz,n(ρ, z)

∂z

∣∣∣∣
2
)

+ �ωl

∑
χ,kz ,n

| gχ,kz,n(ρ, z) |2

+
∑

χ,kz ,n

[Vχ,kz ,nJn(χρ) exp(ikzz)

gχ,kz ,n(ρ, z) + c.c.] (69)

with

Vχ,kz ,n = in+1

(
8π2αRp

L3

) 1
2

�ωL

√
χ√

χ2 + k2
z

. (70)

We can write and solve the Euler equations in the same
approximation obtaining

gχ,kz ,n(ρ, z) =
2m∗
�2

R2
0V

∗
χ,kz ,n exp(−ikzz)vn(u) (71)
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with

vn(u) = exp
(

Γ − Λ

2
u

)
Γ (a)

·
[
−M(a, 1, Λu)

∫ ∞

u

dyy exp
[
−
(

Γ + Λ

2
y

)]

×U(a, 1, Λy)Jn(χR0y)

×− U(a, 1, Λu)
∫ u

0

dyy exp
[
−
(

Γ + Λ

2
y

)]

×M(a, 1, Λy)Jn(χR0y)] (72)

where a, Γ , Λ and u defined above as the hypergeomet-
ric functions M(a, 1, x) and U(a, 1, x). In this case we
solve equation (72) with the boundary conditions that
vn(u) is regular at u = 0 and vn(∞) = 0. In the case
of the Hamiltonian (49) with the electron-phonon interac-
tion given by equation (50) the solution is similar to that
obtained in equation (66).

4.2 Numerical results

We have calculated the polaron self-energy using the
Hamiltonian (45) both with the electron-phonon given
by the equations (46) and (50), and the Hamilto-
nian (56) using always the trial wave function of equa-
tion (64). If we calculate the quantity 2m∗Ep

�2 , the geo-
metric and material polarity parameters entering in the
Hamiltonian are the cylinder radius R0, the electron-
phonon coupling constant α and the polaron radius Rp.
In such units the free electron first subband is given
by χ2

01/R2
0. In Figure 1 we show the main result of

the work, i.e. the quantity ∆Ep

α = − 1
α

(
Ep − χ2

01
R2

0

)
as

function of R0 for a fixed value of Rp using the dif-
ferent polaron Hamiltonians described in the previous
sections. In particular, the full line gives ∆Ep

α using
the electron-phonon interaction (46) with the boundary
condition gmiq(R0, z) = 0; the dashed line gives the same
quantity with the same Hamiltonian and boundary con-
dition, but taking into account the dependence on R0 of
the bulk high frequency dielectric constant (see later); the
dash-dotted line gives ∆Ep

α calculated with the Hamilto-
nian (56) with the boundary condition gχ,kz,n(R0, z) = 0
and finally the dotted line gives the same quantity with
the same Hamiltonian and the boundary condition

gχ,kz ,n(∞, z) = 0.

We find the following features: (a) ∆Ep

α is an increasing
function of R0 when we use the the electron-phonon inter-
action (46) and the boundary condition gmiq(R0, z) = 0;
(b) the asymptotic value of all lines is the bulk polaron
self-energy; (c) ∆Ep

α is an increasing (decreasing) function
for R0 � Rp (R0 � Rp) when we use the Hamiltonian (56)
with the boundary condition gχ,kz ,n(R0, z) = 0; (d) ∆Ep

α
is a decreasing function of R0 when we use the Hamilto-
nian (56) with the boundary condition gχ,kz,n(∞, z) = 0;
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Fig. 1. The quantity
∆Ep

α
(in units Å−2) as function of R0 for

Rp = 5.11 Å using: (a) the Hamiltonian (45) and the boundary
conditions gmiq(R0, z) = 0 (full line); (b) the same as (a), but
taking into account the dependence on the dimension of the
dielectric constants (dashed line); (c) Hamiltonian (56) and
the boundary conditions gmiq(R0, z) = 0 (dash-dotted line);
(d) the same as (c) with the boundary condition gmiq(∞, z) = 0
(dotted line).

(e) the reduction of the high frequency dielectric in the
confined systems implies an increase of the electron-
phonon interaction. We conclude that the polaron effects
are strongly dependent on the boundary condition im-
posed at the surface. These results are coherent with those
found in the literature [51,49]. We remark that in principle
even Rp and α depend on R0 through ωL, but we did not
consider this point. Both α and Rp are decreasing func-
tion of R0 so that ∆Ep should show a greater derivative
as function of R0.

We have also calculated the same quantity ∆Ep

α as
function of R0 for the same value of Rp of Figure 1 using
the Hamiltonian (49) with the electron-phonon given by
the equation (50). The result, shown in Figure 2, is found
considering the boundary condition gmiq(R0, z) = 0. We
find that the self-energy is lower than those shown in
Figure 1, because the discontinuity at the surface of φ(r)
determines an extra potential acting on the electron.

The good convergence of the numerical procedures has
been checked varying mm (the largest index of the Bessel
functions taken into account, for example, in Eq. (36)) and
im (the largest number of zeros for each Bessel function
considered). In the cases of Figures 1 and 2 we have found
that an excellent convergence is obtained with mm = 20
and im = 20. However, bad convergence is obtained if the
polaron radius Rp becomes largest than 10 Å.
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Fig. 2.
∆Ep

α
(in units Å−2) as function of R0 for Rp =

5.11 Å using the Hamiltonian (50) with the boundary con-
dition gmiq(R0, z) = 0.

For what it concerns the dependence of ε∞(0, 0) on the
wire radius, we have used the empirical formula

ε∞(0, 0) = ε∞

(
1 − a

R0
− b

R2
0

)

which well fits numerical results [54]. In our explicit cal-
culation we take a = 2 Å and b = 0.2 Å2.

This formula has been obtained from the numerical
results for the electronic dielectric constants (transverse
and longitudinal) of a rotational ellipsoid with axes c (ro-
tational axis) and a, where these are calculated as func-
tion of the parameter χ = c

a with fixed value of a. When
χ → ∞ we obtain the dielectric constants of the wire of
radius a. We have also verified that the calculation done
on the wire gives the same result (unpublished). A large
work has been done on the ellipsoidal dot [22,23,54], be-
cause in the range 1 ≤ χ < ∞ and a fixed we have the
crossover from the spherical dot to the cylindrical one and
in the range 0 ≤ χ ≤ 1 and c fixed we have the crossover
from a slab of material with thickness 2c to the spheri-
cal dot. We have solved the Schrödinger equation for an
electron localized in the ellipsoidal dot and we have stud-
ied how the ground and the excited states depend on χ.
Moreover, since ∇·P = 1

4π∇2φ �= 0 in the wire, we can say
that the dielectric constants of an ellipsoidal dot, chang-
ing with care the geometrical parameters, can describe all
the situation from that of a slab to that of the cylinder,
included that of the sphere. We stress that in Section 2
we found that for the surface polarization modes ∇·P =0
in the wire, so that the dielectric constant should show,
in this case, a crossover between the two-dimensional and
the one-dimensional features [58].

A complete analysis of the polaron effect in a cylindri-
cal wire should include also the contribution coming out
from the surface polarization modes, as it was done in the
work [59]. We have not done explicit calculations for this
last contribution, but we can give a qualitative conclusion
on this point, since in the work [49] we considered this
point. We found that the volume polaron effects increases
with R0, whereas the surface ones decreases. In this work
we have found the same features for the volume polaron,
so that we think that same should occur also for the sur-
face contributions. In any case explicit calculations could
be done, considering also different boundary condition for
the phonon distribution function.

We summarize the results obtained in this section say-
ing that the results of Figure 2 regard the polaron ef-
fects in a cylindrical sample when on the surface there is
a distribution of microscopic dipoles and that the phonon
distribution function is zero on the surface. The results
of Figure 1 regard a more common physical situation in
which we have an electron constrained to be in a wire
embedded in a matrix of the same material. In the first
case we have induced charges on the surface and in the
wire and in the second one we have induced charges in
all the space. These two situations are described by suit-
able boundary conditions for the distribution function of
the phonons. If the wire is embedded in a different mate-
rial, the polaron self-energy is first an increasing and then
a decreasing function of R0; if the wire is embedded in
a matrix of the same material, the polaron selfenergy is
a decreasing function of R0. Furthermore we have found
that the dependence on the cylinder radius of the dielec-
tric constants increases the polaron selfenergy.

5 Conclusion

In this work we have shown that in the continuous model
of a cylindrical confined system, the dispersive dielectric
function depends on the cylinder radius. A first contribu-
tion comes from the spatial dispersive terms of the bulk
dielectric function and a second one has been found in
the high frequency dielectric function, even if the spatial
dispersive terms are neglected. In any case, the ratio be-
tween the full dielectric constant and the high frequency
one does not depend on the wire dimension. The conse-
quence of these facts is that the Fröhlich electron-phonon
coupling increases on decreasing the cylinder radius.

We have calculated the electron-phonon interaction
considering different boundary conditions on polariza-
tion field showing that one may have different polaron
Hamiltonian. We have calculated polaron self-energies
taking also into account the contribution of the bound-
ary condition on the phonon distribution and the elec-
tronic wave function. The final result is that the self-
energy can increase or decrease as a consequence of both
the boundary condition and the dimension dependent
electron-phonon coupling.
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Appendix A

We consider the polaron Hamiltonian given in
equation (45). Since the Hamiltonian is invariant for
rotation around the z-axis, we perform the unitary
transformation

H1 = exp(−S)H exp(S) (73)

with
S = iϕ

∑
miq

ma†
miqamiq. (74)

We obtain

H1 = − �
2

2m∗

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2

+
1
ρ2

(
∂2

∂ϕ2
+ 2

∂S

∂ϕ

∂

∂ϕ
+
(

∂S

∂ϕ

)2
)]

+
∑
miq

�ωL

(
a†

miqamiq +
1
2

)

−
∑
miq

[
VmiqJm

(
χmi

ρ

R0

)

×exp(iqz)
R0

a †miq +h.c.

]
. (75)

We introduce now the generalized Lee, Low and Pines
unitary transformation [52] to extract the polaron effects
in the self-energy through

H2 = exp(−S1)H1 exp(S1) (76)

with

S1 =
∑
miq

(
g∗miq(ρ, z)amiq − gmiq(ρ, z)a†

miq

)
. (77)

We obtain

H2 = − �
2

2m∗

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+ 2

∂S1

∂ρ

∂

∂ρ
+

∂2S1

∂ρ2
+
(

∂S1

∂ρ

)2

+
∂2

∂z2
+ 2

∂S1

∂z

∂

∂z
+

∂2S1

∂z2
+
(

∂S1

∂z

)2

+
1
ρ2

(
∂2

∂ϕ2
+ 2

∂S2

∂ϕ

∂

∂ϕ
+
(

∂S2

∂ϕ

)2
)]

+
∑
miq

�ωL

[ (
a†

miq − g∗miq(ρ, z)
)

(amiq − gmiq(ρ, z))

+
1
2

]
−
∑
miq

[
VmiqJm

(
χmi

ρ

R0

)
exp(iqz)

R0

× (a †miq −g∗miq(ρ, z)
)

+ h.c.
]

(78)

with

S2 = exp(−S1)S exp(S1)

= i
∑
miq

mϕ
(
a†

miq − g∗miq(ρ, z)
)

(amiq − gmiq(ρ, z)) .

(79)

In this work we are interested only to the ground state of
the polaron, when no real phonon is present in the system.
We define

Hp = 〈0 | H2 | 0〉 =

− �
2

2m∗

⎡
⎣ ∂2

∂ρ2
+

1
ρ

∂

∂ρ
−
∑
miq
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∂ρ

∣∣∣∣
2

+
∂2

∂z2

−
∑
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∣∣∣∣∂gmiq(ρ, z)
∂z

∣∣∣∣
2

+
1
ρ2

∂2

∂ϕ2
−
∑
miq

m2 | gmiq(ρ, z) |2
⎤
⎦

+�ωL

∑
miq

| gmiq(ρ, z) |2

+
∑
miq

[
VmiqJm

(
χmi

ρ

R0

)
fmiq(z)

R0
g∗miq(ρ, z) + c.c.

]
.

(80)

This is the Hamiltonian of a particle with a potential due
to the polarisation in the wire. We write

Hp = − �
2

2m∗

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

∂2

∂z2
+

1
ρ2

∂2

∂ϕ2

)
+ Vp(ρ, z)

(81)
where

Vp(ρ, z) =
�

2

2m∗
∑
miq

(∣∣∣∣∂gmiq(ρ, z)
∂ρ

∣∣∣∣
2

+
∣∣∣∣∂gmiq(ρ, z)

∂z

∣∣∣∣
2
)

+
(

�
2

2m∗
1
ρ2

∑
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m2 | gmiq(ρ, z) |2

+�ωL

∑
miq

| gmiq(ρ, z) |2
)

+
∑
miq

[
VmiqJm

(
χmi

ρ

R0

)
exp(iqz)

R0

×g∗miq(ρ, z) + c.c.

]
. (82)

The functions gmiq(ρ, z) determine the distribution func-
tion of the polarization modes which contribute to the
total polarization and consequently to the effective po-
tential acting on the electron. We calculate the ground
state energy through the variational method as described
in Section 4.

Appendix B

To solve equation (61), we make the ansatz

gmiq(ρ, z) = R0 exp(iqz)ḡmiq

(
ρ

R0

)
(83)
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so that the substitution gives

− �
2

2m∗

[(
d2ḡmiq

du2
+

1
R0

(
R0

| Φ |2
∂ | Φ |2

∂ρ
+

1
u

)
dḡmiq

du

)

+
(
−q2R2

0 +
R2

0

| Φ |2
∂ | Φ |2

∂z
iq − m2

u2

)
ḡmiq

]
exp(iqz)

+�ωLR2
0 exp(iqz)ḡmiq) = −VmiqJm (χmiu) exp(iqz)

(84)

where u = ρ
R0

. It can be seen that the term 1
Φ2

∂Φ2

∂ρ is a
function of u. It is difficult to solve the equation (84); our
approximation is to substitute the coefficients of ḡmiq and
its derivatives with the average values on the trial elec-
tronic wavefunction. This is a mean field approximation
already used in the polaron theory [56]. In this case, since
∂|Φ|2

∂z = 0, we have

d2ḡmiq(u)
du2

+
(

1
u
− Γ

)
dḡmiq(u)

du

−
(

Q2 +
m2

u2

)
ḡmiq(u) = V̄miqJm (χmiu) (85)

where the quantity Γ , Q2, Rp =
(

�

2m∗ωL

) 1
2

and V̄miq =

Vmiq
2m∗
�2 are defined through equation (67). This equation

is solved using standard mathematics, since the solution of
the homogeneous equation associate to equation (85) can
be written in terms of two independent hypergeometric
functions.
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